
Amortizing 3D Graphics Optimization Across Multiple Frames

Jinl Dut-bin

Naval Research Lab’

Code 5580.455 Overlook Avenue SW

Washington, D.C. 20375

+1-202-767-6025

dttrbin @ait.nrl.navy.mil

ABSTRACT

This paper describes a mecban istm for improving rendering
rates dynamicall~ during runtime in an interactive three-
dimensional graphics application. Well-known techniques
such as transforming h lerarcbical geometry into a flat list
and removing redund;tn[graphics primitives are Often

performed off-l ine on i[at ic databases. or continuously
every rendering frame. In :~clciition. these optimizations are
usually performed over tbe whole database. We observe that
much of the database remains static for a fixed period of
time. while other porti{)ns are modified continuously (e.g.
the camera position). [Jt- w-e repeatedly modified during
some finite interval (e.g (luring user interaction). We have
implemented a runtime optimization mechanism which is
sensitive to repeated. local database changes. This

mechanism employs timing strategies which optimize only
when the cost of optimization wil I be amortized over a
sufficient number of lrames. LIsing this optimization
scheme. we observe a rendering speedup of roughly 2.5 in
existing applications. Wc discuss our initial implementation
of this mechanism. the 1mpmved tlnling measurements. the
issues and assumptions u r tna~ie. and future improvements.

KEYWORDS

three-dimensional graphics. interactive graphics, real-time.
optimization. rendering. \ lrtttal reality

INTRODUCTION

In 1976 Clarke suggested that a hierm-chical data structure
would have several characteristics which are useful for
manipulating and rendering graphics objects [4]. One pow-
erful advantage of a tree \tructure for the application pro-

grammer is that matr]cm a[each node in the tree can
represent Individual coorci”inate systems. When the pro-
grammer manipulates ii gl-apilics object, its children will

inherit the chan:es implicitly [13].

However, for the renderl n: engine. a hierarchical data struc-
ture is not optimal. To keep the highiy pipelined architecture

I Th[s work Pld(lllllll; ltdy l’(M1l@L![L’l! :1[lIIL UIIIVWWV of VIrgmm

Permission to make digitrd/hard copies of all or part of [his material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-

m.ght notice, the title .Of the pll~licati~ll and its date appear, and notice is
gwen that copyright M by permission of {he ACM, Inc. To copy otherwise.
to republish, to post on servers or to redistribute to lists. requires specific
permission and/or fee.
UIST 95 Pittsburgh PA USA
@ 1995 ACM O-89791-709-x/95/l 1..$3.50

Rich Gossweilec Randy Pausch

University of Virginia, School of Engineering

Department of Computer Science

Charlottesville, VA 22903

+1-804-982-2289

[rich I pausch] @Virginia.edu

of modern graphics hardware from stalling, we would prefer
to make few, if any calculations while traversing the graph-
ics database. To that end, afiat list of graphics primitives is
preferable, because it requires no combination of transfor-
mations (e.g. matrix multiplications). Flat lists also offer the
opportunity to perform compiler-like peephole optimiza-

tion (e.g. removing redundancies), and is efficient for pipe-
lining graphics.

Existing Solutions

The use of optimization techniques to improve rendering
speeds is well-established, in both research (e.g. the Berke-
ley and UNC Walkthrough projects [7] [1] [2]) and commer-
cial systems (e.g. SGI Performer [11]). These two systems
exemplify both ends on the spectrum of when to optimize.
The Berkeley Walkthrough assumes that the database is
static, and can perform aggressive off-line optimization to
restructure the database for improved runtime performance.
Performer, on the other hand, supports very dynamic envi-
ronments and cannot make assumptions about the static
nature of the database. Performer employs global database
optimization~or every frame. Since optimization takes time,
Performer users prefer to execute these mechanisms on an
auxiliary CPU to minimize impact on the rendering CPU.
Both techniques apply optimization globally over the data-
base.

In this paper, we present optimization that occurs qfter

higher-level techniques such as culling objects which are
not in view, or using multiple representations of objects
stored at various levels of detaii [12].

Our Approach

We have observed that in many applications some portions
of the database remain unchanged during the entire run, and
other portions change repeatedly. but during brief intervals
(e.g. when the user is directly manipulating the object). and
still other portions change continuously (e.g. the camera
Iocation).

Since we have constructed a rendering system which is
application independent [8]. we, like Performer, cannot
make assumptions that a given portion of the database will
remain static. We must analyze the database during runtime.
Instead of attempting to transform the enure database dur-
ing each frame, our mechanism records the frequency with
which portions of the database change, and uses this in for-

November 14-17, 1995 UiST ’95 13

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1995 2. REPORT TYPE

3. DATES COVERED
 14-11-1995 to 17-11-1995

4. TITLE AND SUBTITLE
Amortizing 3D Graphics Optimization Across Multiple Frames

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5580,4555 Overlook Avenue
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

mation to predict h[~w t’requently the object will be
changed in the neal- future. The mechanism determines
or predicts the cost clt performing an optimization and
uses a simple utility function to determine the value of
optimizing those pt)rl]ons (Jt’the database. The algorithm
collects data abou{ the average frequency for which

each object gets altered It’ the object does not get altered
frequently, then the C(M(to optimize the object may be
worth the savin~s rec{~uped over later frames. However,
if the object is con~tantl> changing. then there is less
incentive to perform the optimization, as the benefits
will be fleeting. Our approach is a hybrid. as shown in
Figure 1:

Figure 1: When 10 optimize

The Tree Structure

We implemented ou] optimization mechanism as part of
the Alice graphics s\\tenl I 10]. Alice supports a variety
of applications ran:t n: from immersed virtual environ-
ments. to rapid expl(}ration of three-dimensional inter-
faces. to a teach! n: tool for graphics classes. The
rendering subsystem \8] li based on a hierarchical data
structure. All graph lc:ll {)l~jects in the rendering sub-sys-
tem are represented m nodes in the tree. Nodes contain
transformation matrices and may also contain geometry
consisting of polygoils. polylines or polypoints.

When rendering from this d~ta structure, there are two
basic forms ot’ inefficiency:

1) matrix multipllc:itions to combine the implicitly
chained transformat ions (in order to render a leaf node.
we must first apply L!I1the transformations from the root
node to that Ieatj.

2) redundant calls (() set state in the graphics pipeline;
for example. in tnt)ii ~>bjects. a large number of poly-
gons are the same cOIOI-.”Repeatedly calling the graphics
setColor () >Ubroutine (the OpenGL
glColor3f () call) [9] disrupts the pipeline. In addi-
tion, even using a Iocai i f statement in the inner render-

ing loop also disl-upts the hardware pipeline [5],
degrading renderi n: performance. This is partially
because the i f st:ltenlent to compare with, for exam-
ple, the current nol mal vectot-. needs to compare three
floating point valuei The most efficient mechanism is to
produce the list of g] aph[cs calls which will be stream-
lined into the graphics pipeline. and to remove the
redundant calls. Thl\ IS ex:Ktly what Performer does on
an extra CPU for CUICI1ir.ilne.

OUR TECHNIQUE

Our technique involves several optimization phases and
a separate mechanism for analyzing the benefit of per-
forming the optimization. The phases are:

● streamlining each individual node in the tree by cre-
ating an array of graphics calls without any interven-
ing computations. This is done for each node in the
tree, so that if the node is altered, only that particular
node’s streamlined array needs to be re-constructed

streamlined hst of grapnlcs
-t

C/%– G“
● peephole optimization to the streamlined

removing redundancies
list,

● flattening the hierarchical tree structure -- coalescing
nodes so that each subtree node has a single cache
list representing all of its children at one trans-
formed level. We call this list the streamlined array.

—c——cuun

● peephole optimization of the flattened list for the
entire subtree

Since invoking these optimization mechanisms requires
time. we need a guideline to determine if it is worth per-
forming these operations. The algorithm must evaluate
the time needed to perform the optimization, how long
the object has remained unaltered and how much of a
predicted improvement will be achieved.

Optimization Phases

Converting Each Node into a Rendering List

Each node in the tree may be thought of as a container
holding a set of properties describing the object or sub-
object at that level. For example, in a hierarchical model
of a bunny, the bunny’s foot may be a child of the
bunny’s leg. As a node, the foot contains geometry,
color information and inherits the transformation matrix
from its parent (the leg). When traversing the foot’s
node, the rendering engine may have to perform several
conditional statements to determine how to draw the
foot. The color may be inherited from the parent (the
leg), set for all of the polygons, be specified for each
~ndividual polygon. or specified for each individual ver-
tex of each polygon. Evaluating tihese conditional state-

14 UIST ’95 November 14-17, 1995

ments every frame (Iisrupls the pipeline. If the graphics
calls are the same 1r{)m triune to frame. these calls can
be cached into an al-ray Then the rendering engine can
iterate through the :Irro! rather than making repeated
conditional ev:~lttatl(]ni. lt’bile it is surprising that seem-
ingly minor conditlc)nal tests have a strong impact on

rendering performance. this is due to the highly pipe-

lined nature of’ high-end graphics hardware. To quote
the authors of SGl l’(:l-f(JrnleI-:

Peephole Optimization

When rendering an (~hiect. there are many polygons

which are the same L’{)[ol” Instead of’ resetting the color
for every vertex or t(lr every polygon. the color call can
bef:lcti)redout:ltl~l lll:l~leo[lly(>llce.

This redttndancy I,l,[c)ritlg c:in occur for many of the
properties which ch~i;lclel-ize the object (e.g. the color,
theverte~ normal \cclt)r\. and the textures). Forthe ini-
tiai implementation. OUI- optimization removes redun-
dant color and norIIIal information This operatiott is
performe(i during IIIL’ construction of the streamlined
array,

Eariy peephoie compliers useci a simiiar method to track
the source of a register’s value and remove redundant
load commands [6] Lforc sopilisticated peephole opti-
mizers perform incrcmlngiy c~~tnpiex pattern matching
and even rem-r:mge c(xic in an attempt to minimize the
number of instructlon~ and register manipulations: we
hope touseanumbel (lfthe~erechniciue stofurtheropti-
mize renciering.

Flattening the Tree

Since tile optinlizatl~)n mecilanism is traversing the hier-
archical ~tructure III(i cre:ltitl: cacile arrays for each
node. the cost to :lc~umul:ltc the transformation matrices
is triviai. This ali(lii~ tile optimization mechanism to
effectively flatten ~~lhtrees into a single node with a
longer cache arrtiy,

Figure 2: Tree flattening

Note tixit the origlll:ll Ilicr:irci]y is not discarded. since
aitet-ationstothe n(dc~ In the tree reqttir ethatthecache
be invalidated and the (lriglnal hierarchy be available.

Fattening the hici-,11-cll! into a rendering iist is an
explicit iuncti(ln c<lll [n l’cldoinncl. and thm+orc makes
it the responsibility> (JI [iw ai~i~iication programmer to

perform this operation. Our optimization mechanism
engages automatically when optimization is cost-effec-

ti ve.

Analysis Mechanism

The important distinction of our mechanism is how it
determines when optimization should be done. and to
which portions of the database. Performer does optimi-
zation giobaily to the entire hierarchy every frame, Our
approach is to perform a utility measurement. compar-
ing the cost/benefit of flattening subtrees and factoring
out redundant calls. We measure how long an object
remains unaltered, how long it takes to optimize. and the
value of performing the optimizations.

Waibciock Time v. Frame Time

Because we are interested in how many times an object
is modified versus how many times it is rendered, it is
more appropriate to use rendering frame counts rather
than wali-ciock time. For example, if we used wail-
ciock time. and the system pauses momentarily (perhaps
due to other users on the machine) a single frame couid
take arbitrarily long to render. The ratio of how fre-
quently the object is modified to how frequently it is
rendered is what is importan~.

While frame-counting is necessary to determine when to

opmmze. wall-clock time is necessary to compute the
effective~less of the optimizations. We measure the ren-
dering times of objects in both their unoptimized and
optimized states.

important Information for the Aigorithm

AUT -- Average Unaltered Time: the ratio of the num-

ber of frames where an object is not altered to the totai
number of frames (This is a running total average. but
other options are discussed later).

TTRU -- Time to Render Unoptimized: the amount of
time to render an object without any optimizations.

TTRO -- Time To Render Optimized: the amount of
time to render an object once it has been optimized.

OT -- Optimization Time: the time it takes to perform
the optimization on the object.

Computing Variables

Since there already is a penaity for loading an object
from the disk we expend slightly more time to obtain
timing information. We load the object and render it
several times without performing a swapbuf f er ()

tail. During this time we gather the TTRU. the TTRO
and the OT. We also create the streamlined array for
each node. The performance cost of gathering this infor-
mation is not observable, as it is dominated by the time
to read the object from the disk.

November 14-17, 1995 UIST ’95 15

Dynamically Created Objects

During the execution of” the program. subtrees may be
reparented. effecti \cly creating new objects. and the
timing variables ce:lw to be lrepresentative. In this case,
we use a simple. C(J:IIX predictive function based cm the
numbet- of’ polyg(Jn\ in ,1iubtree

Based on tirnin:s tal,ell;)n a la[-ge number of subtrees on
an ~~JI Reality Eng] ne- [~]. we find for an N polygon
subtree, the represen[ariw t[mes are:

EstimatedTTRU = ~() ()()(K)127 ‘K.N) seconds

EstimatedTTRO = (().(XXKN)3X “: N) >econds

EstimatedOT = (0.(HMX)879 ‘h N) seconds

The Utility Function

For each node, we ~tcll-ethe TTRU. TTRO. and OT. The
utility function compu[es the amount of savings we will
obtain over the avem:e unaltered time (AUT) and adds
the cost of perfomling the optimization. The total is

compared to the co~t of’ rendering unoptirnized over the
same ALTT

if (TTRO’KAUT -+ OT < TT1<U’;:AUT) then optimize...

This simple algorithm dots not prevent arbitrarily bad
hitches. For example. it’ the object has not changed for a
very long time. bul the optimization time (OT) is five
seconds. the algorl[hm WOLIkl perform the optimization,
and the system would stall for tive seconds. This prob-
lem can be solved thy placing a hard upper limit on the
allowable OT.

Invalidating the Optimization

Since our system iupports a dynamic tree. we must
invalidate the caches when an object’s characteristics
change (e.g. colol. translucence). texture), when the
object’s matrix un(lergoes a transformation. and when
reparenting occurs The c:iches are marked dirty and the
rendering engine trilverses the unoptimized hierarchy
instead. Since each nmle n~wntaims its own streamlined
array, any unaltered node keeps its streamlined array:

PEa+!jyJ
(111$ncxk \va\ :Illcl cd.
so Its Wr:ly 1. lll\ :Illd:llc(l

Figure 3: in\alidatlng the optlmizations i

MEASUREMENTS
The effectiveness of tbls optimization mechanism
depends on how Irequen[ly an application alters an
object. It’ the object is :~ltet-ed continuously, then no opti-
mization are performed. It’ :in obiect is never altered.
then it is optimize[l once :Ind rem:uns in the optimized
state for the duration of the application.

To establish that these optimization produce a worth-
while savings, we measured the time to render a variety
of objects when they are optimized and when they are
unoptimized. The results are shown in Table 1. The
graphical objects in the table represent several contrived
and actual objects to explore variations on tree configu-
rauons and redundancy removal. Note that these speed-
ups are greater than 2.5; actual day-to-day use achieves

roughly a 2.5 speedup because of constant cost opera-
tions per frame such as clearing and swapping the frame
buffer. which dilutes the speedup somewhat.

Now m the reviewers: the enclosed video tape shows the

amusement park simulation rendering at 12 frames per

second without optimization and 29 fratnes per second

with the optimizalions engaged.

As future work we would like to gather statistics about
how frequently objects are optimized and how long they
remain optimized.

CONCLUSION

The graphics database is accessed by both the applica-
t~on program and the rendering engine. but the usage
patterns and frequency of access dictate very different
internal representations. Transforming a subtree into a
render-optimized list steals rendering time which may
be recouped over future frames. The question of utility
becomes, “1s it worth the time to optimize now, to speed
up the application for the future?” By observing that
some parts of the tree are active for discrete periods of
time, we have implemented a runtime optimization
mechanism which optimizes only local portions when
the utility of optimization appears worthwhile. The
results are dependent on usage patterns, but initial tim-
ing experiments indicate that this mechanism is useful
for improving runtime efficiency. Our initial measure-
ments indicate a factor of 2.5 increase in rendering
speeds when the optimization mechanism is employed.

HIGH LEVEL OBSERVATIONS
We have two high level observations based on this
implementation. The first is that preliminary results of
employing this mechanism look promising. Alice was
recently used in a graphics class project where ten stu-
dents built an amusement park (each student built indi-
vidual rides). This was a fair test, involving an
application written by a ten person team, unaware of the
underlying optimization techniques. The optimization
mechanism improves the rendering by a factor of 2.5.

Our second observation is that trees are typically con-
structed with very little depth -- on the order of five lev-
els or less.

FUTURE WORK

The following is a brief list of issues we intend to con-
sider as we continue this work.

16 UIST ’95 November 14-17, 1995

Spatial Coherency

The rendering eng] nc. by computing the bounding vol-
umes of subtrees, l.nt~ws which objects in the tree are
located neat’ each ()(her al’(er the matrix transformations.
This may not be i[icn(lc:il to the way the user has con-
structed the parent-child lrelationships of the tree.

For portions of tht dat:lhase which do not change over
long periods ot’tin}c. thcl-cndering engine could tiatten
the application tret and (hen reconstruct aditferent tree
based on spatial locality. This would allow for more effi-
cient high-level cull Iny

Timing Across Runs

We currently cotnpute a]l variables for the optimization
at runtlm.e. There l])ay he some benefit in storing the
timing ciataacrm+ I-(In\ This information might be use-
ful when determinlny the IItility (~t’ flattening and may
serve as a second-order statistic shout the nature ot’ the
object (e.g. the ‘-lal]]p” f]l~ject is used by many applica-
tions as static deco[,Itlon I

Averaging Differently
we currently compute the Average Unaltered T]me
(AUT)overtheenlirc run. An alternate approach is to
weight the timin:~. so that over tjme the more recent
a!teration~ intluencr (he avet-age more than alterations
having occurred a long tlmc ago. The general problem is
similar to the page replacement problem in operating
systenl\.

Application Hints and/or Explicit Control
It might be prLIdem In w)me ca~e~ to allow the applica-
tion to explicitly express g~md moments to perform opti-
mization. For ex:ltnple, if the application knows that
the user has paLise[l or gone into another mode, then that
might be a good tl!l~e to (~pt!mize.

Progressive Flattening

For example, if ~!c tlattcn a bunny object which has
children nodes of head. b(xly and arms, and then we
rotate the head. the ent]l-c head tree will be unflattered.
If, instead, we proyres\)\ely llatten each subtree into
larger and larger Ii.1 i. wc can unflatten only the portions
which have been :iltcre[l. rather than the whole subtree.

Combine with Other Optimization Techniques

Using this optimirati~)n mechan]sm does not preclude
off-line optimizatl[]n For example. with a static data-

base such as the Btt keley W“alkthrough. off-line optimi-
zation can providr a great dea\ of effective visibility

cullin:. During runfime :1given “cell of visibility” may
still have a large number of objects. Our mechanism
may then be effecllic t(~l-lmprovitlg the cell.

ACKNOWLEDGEMENTS
We would like to (h:lnk :111of the members of the User
Interface Group al lbe l.~nliersity of Virginia for their

valuable help ancl IdeJ\ (luring the completion of this
work.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

John M. Airey. John H. Rholf and Frederick
Brooks Jr., Towards Image Realism with

Interactive Update Rates in Complex Virtual

Building Environments, ACM SIGGRAPH
Special Issue on 1990 Symposium on
Interactive 3D Graphics, 24 (2). 1990. pp. 41-50.

Frederick Brooks Jr, Wafkthrough - A Dynamic

Graphics System for Simulating Virtual Buildings,
Proceedings of the 1986 Workshop on
Interactive 3D Graphics.

Kurt Akeley, Reality Engine Graphics, ACM
Annual Proceedings of SIGGRAPH ’93
(Anaheim California), August 1-6. 1993,
.Addison-Wesley, pp. 109-116.

James H. Clark, Hierarchical Geometric Models
for Visible Sur-jace Algorithms, Communications
of the ACM. 19(10), October 1976. pp. 547-554.

Sharon Clay, member of SGI Perfomer Group.
Personal conversation, April 25.1995.

Jack W. Davidson and Christopher W. Fraser,
Register Allocation and Exhaustive Peephole

Optimization, Software -- Practice and
Experience, 14(9), John Wiley & Sons, September
1984, pp. 857-865.

Thomas A. Funkhouser, Carlo Sequin and Seth J.
Teller, Management of Large Amounts of Data in
Interactive Building Walkthroughs. 1992

Symposium on Interactive 3D Graphics, ACM
flG&FtAPH. Cambridge Mass. April 1992, pp.

Rich Gossweiler. Chris Long, Shuichi Koga,
Randy Pausch, DIVER: A Distributed Virtual

Environment Research Platjorrn, IEEE
Symposium on Research Frontiers in Virtual
~;_;~ October 25-26, 1993, San Jose, CA, pp.

Jackie Neider, Tom Davis and Mason Woo, Open
GL Programming Guide, Addison-Wesley,
Reading. Mass. 1993.

Randy Pausch, Tommy Burnette. A.C. Capehart,
Matthew Conway, Dennis Cosgrove, Rob DeLine,
Jim Durbin, Rich Gossweiler, Shuichi Koga, Jeff
White, Alice: A Rapid Prototyping System for 3D
Graphics, IEEE Computer Graphics and
Applications, 15(3), May 1995, pp. 8-11.
http://www.cs.virginia. edu/-alice/

John Rohlf and James Helman, IRIS Performer: A
High Pe~ormance Multiprocessing Toolkit for
Real-Time 3D Graphics, ACM Annual
Proceedings of SIGGRAPH ’94, (Orlando
F18~~~;; July 24-29. 1994, Addison-Wesley, pp.

November 14-17, 1995 UIST ’95 17

12. Bruce Schilc’ll[cr (Ed.), Computer Imuge
Ge/?erc/~i{~//.JtJllll Wiley and Sons, New York, NY.
1983.

18 UIST ’95 November 14-17, 1995

Table 1: Optimization Timing Measurements

pl,-optlmld [Rx
pre-optirnized optimized

Lhatllcterls(lcs

hl<m calls to
poly-

Cill IS to culls to cd Is to
ob]ect ‘Ill’< Ilo[lw Set Set tl me Set set time to

gons
t]me mtlo

I)Cplll color Normal Color Normal
opti m]ze

bunny 3 13 389 389 I683 0.00500 36 389 0.00144 0,02964 3.47

cow I x 3263 3263 12330 0.04557 1 12255 0.01626 041885 2.80

01d demo1[)oltl , 7 609 609 2462 0.00744 82 609 0.00213 0.04448 3.50

to,llll , 12 196 f 9($ 792 000240 38 254 0.00080 001691 3,00

ne\\ delm> U][llll I Q .55 55 220 0.00067 7 55 0.00016 000417 4,19

10 levels dwp 10 I () 20 20 80 0.00027 1 20 0.00008 0.00187 3.38

20 Ievcls deep 2() 20 40 40 160 0.00064 1 40 0.0Q013 000371 4.92

30 levels deep .10 30 60 60 240 0.00093 1 60 0.00019 000536 4.89

10 levels wide I 10 20 20 80 0.00027 I 20 0.00008 0.00183 3.38

20 Iuds Wldc I ?() 40 40 160 0.00054 1 40 0.00012 0.00361 4.50

30 levels WI(1C 1 30 60 60 240 000085 1 60 0.00019 0.00545 447

8 t’llli bln:u> x 256 512 51~ 2048 0.00978 1 512 0.00198 004649 494

10 full bln;u) 10 1024 2048 2048 8192 003285 1 2048 0.00834 0.20341 3.94

i ~ fll]l blwy 12 4096 8192 8192 32768 0.16171 1 8192 0.04178 084584 3.87

200”node Colol I 200 200 200 800 0.00370 200 1 0.00096 0,02164 3.85

300”]IcldeColw I 300” 300 300 1200 0.00563 300 1 0.00133 0.03298 4.23

200 node 1101Illli I 200” 200 200 800 0.00385 I 200 0.00082 0.022 I9 4.70

300”node norn]al 1 300” 300 300 1200 0.00596 1 300 0.00120 0.03381 4.97

\t:l Iic 3? 3X5 3490 3490 14596 0.06366 1842 2269 0.01696 0.00728 3,75

amUsenwlt pal L

WI11121LXI j? 3X5 3490 3490 14596 0.06366 varl - vari- 0.02232 040113 2,85
ctmlb~lll~llt pmi able able

“opt. time” is the Optimization Time, OT

“ratio” is the T]me To Render Unoptimized (TTRU) / Time To Render Optimized(TTRO)

“# levels deep” i, a 1 node wide, # levels deep tree

“# levels wide” ii ;i I n(xie deep. # levels wide tree

“# t’LIII binary” is u # Ie\el deep. full binary tree

“# node color” I\ J I level deep. # level wide tree, with every polygon set to a different color

November 14-17, 1995 UIST ’95 19

“# node normal” I\ a I level deep. # level wide tree, with every polygon rotated to produce a different normal

